§ Description
Link.
无修改区间求逆序对。
§ Solution
首先有一个显然的 做法,由于过不了所以我就不废话。
其实有了 的过不去做法,我们就可以根据这个思路然后预处理解决问题。
我们需要处理的信息有:
-
散块的逆序对数量
-
以块为单位的区间逆序对数量
那么我们需要处理的数组就有以下几个:
-
previous[i]
表示 到 该块开头的逆序对数量。 -
suffix[i]
同理。 -
block[i][j]
表示前 个块中 元素个数。 -
intervals[i][j]
表示以块为单位的区间 中的逆序对数量。
讲讲预处理方法。
-
previous[i]
和suffix[i]
的处理方法都很显然,可以一直扫着然后FWT扫就行。 -
block[i][j]
可以递推,递推式为block[i][j]=block[i+1][j]+block[i][j-1]-block[i+1][j-1]+cont(i,j)
。其中cont(i,j)
表示计算对应块的逆序对数。 -
intervals[i][j]
每次循环到块的开头继承上一个块的贡献即可。
计算贡献的方法很简单,归并即可。mrsrz讲得也挺清楚的,我这里就不再赘述,主要讲讲怎么卡常。
首先我们可以把主函数里的所有循环全部展开,经过实践参数传8的时候跑得比较快。
然后八聚氧先加上,luogu O2也开着。
再其次快读fread快输fwrite,这些都是卡常的标配。
然后就把能拿出来的结构体拿出来,实在不能就不管了。
然后去STL,pair vector能去就去。
然后long long开在正确的地方,不要无脑replace。
函数inline,循环register。虽然可能作用不大但是可以先加上。
然后调块长,经过无数次实践发现取150~170较为优秀。
然后加了过后发现就算rp再好也只有60pts。
然后谷歌搜索硫酸的化学式H₂SO₄,给评测机喂硫酸(idea来自SyadouHayami)。
然后本来交了5页都过不了,这下再交两次就过了。
// 省略八聚氧
#include <cstdio>
#include <iostream>
#include <algorithm>
#include <cstring>
using namespace std;
const int Maxn = 1e5 + 5;
const int Maxm = 650;
const int each = 160;
int n, m, blocks, Lp[Maxn], Rp[Maxn], isa[Maxn], head[Maxn], tail[Maxn], sorted[Maxn], belong[Maxn], previous[Maxn], suffix[Maxn], block[Maxm][Maxn];
long long intervals[Maxm][Maxn];
struct Holy_Pair
{
int first, second;
bool operator < (const Holy_Pair& rhs) const
{
return first < rhs.first;
}
} current[Maxn];
struct Fenwick_Tree
{
int fwt[Maxn];
inline void Modify(int x, int v)
{
for (; x + 5 <= Maxn; x += x & -x) fwt[x] += v;
}
inline int Query(int x)
{
int ret = 0;
for (; x; x ^= x & -x) ret += fwt[x];
return ret;
}
} FWT;
#define io_e '\0'
#define io_s ' '
#define io_l '\n'
namespace Fast_IO
{
... // 省略快读
} // namespace Fast_IO
using Fast_IO::read;
using Fast_IO::write;
inline Holy_Pair make_pair(int first, int second)
{
Holy_Pair ret;
ret.first = first;
ret.second = second;
return ret;
}
inline int Merge_Vct(int rhs[], int shr[], int szl, int szr)
{
int itl = 1, itr = 1;
int ret = 0, ctr = 1;
while (itl <= szl && itr <= szr)
{
if (rhs[itl] < shr[itr]) ++itl, ++ctr;
else
{
ret += szl - ctr + 1;
++itr;
}
}
return ret + szr - szr;
}
inline int Merge_Idx(int st1, int st2, int sz1, int sz2)
{
int ret = 0, id1 = st1 + 1, id2 = st2 + 1;
sz1 += st1, sz2 += st2;
while (id1 <= sz1 && id2 <= sz2)
{
if (sorted[id1] < sorted[id2]) ++id1;
else
{
ret += sz1 - id1 + 1;
++id2;
}
}
return ret;
}
inline void Behavior(int l, int r, long long &ans)
{
int itl = 0, itr = 0;
if (belong[l] == belong[r])
{
for (int i = head[belong[l]]; i <= tail[belong[r]]; ++i)
{
if (current[i].second >= l && current[i].second <= r) Rp[++itr] = sorted[i];
else if (current[i].second < l) Lp[++itl] = sorted[i];
}
if (l == head[belong[l]]) ans = previous[r] - Merge_Vct(Lp, Rp, itl, itr);
else ans = previous[r] - previous[l - 1] - Merge_Vct(Lp, Rp, itl, itr);
}
else
{
ans = intervals[belong[l] + 1][belong[r] - 1] + previous[r] + suffix[l];
for (int i = head[belong[l]]; i <= tail[belong[l]]; ++i)
{
if (current[i].second >= l)
{
Lp[++itl] = sorted[i];
ans += block[belong[r] - 1][1] - block[belong[r] - 1][sorted[i]] - block[belong[l]][1] + block[belong[l]][sorted[i]];
}
}
for (int i = head[belong[r]]; i <= tail[belong[r]]; ++i)
{
if (current[i].second <= r)
{
Rp[++itr] = sorted[i];
ans += block[belong[r] - 1][sorted[i] + 1] - block[belong[l]][sorted[i] + 1];
}
}
ans += Merge_Vct(Lp, Rp, itl, itr);
}
write(io_l, ans);
}
signed main()
{
read(n, m), blocks = (n - 1) / each + 1;
if (n <= 8)
{
for (int i = 1; i <= n; ++i)
{
read(isa[i]);
current[i] = make_pair(isa[i], i);
}
}
else
{
#pragma unroll 8
for (int i = 1; i <= n; ++i)
{
read(isa[i]);
current[i] = make_pair(isa[i], i);
}
}
if (blocks <= 8)
{
for (int i = 1; i <= blocks; ++i)
{
head[i] = tail[i - 1] + 1;
tail[i] = tail[i - 1] + each;
if (i == blocks) tail[i] = n;
}
}
else
{
#pragma unroll 8
for (int i = 1; i <= blocks; ++i)
{
head[i] = tail[i - 1] + 1;
tail[i] = tail[i - 1] + each;
if (i == blocks) tail[i] = n;
}
}
if (blocks <= 8)
{
for (int i = 1; i <= blocks; ++i)
{
memcpy(block[i], block[i - 1], sizeof(block[0]));
sort(current + head[i], current + 1 + tail[i]);
for (int j = head[i]; j <= tail[i]; ++j)
{
++block[i][isa[j]];
belong[j] = i;
sorted[j] = current[j].first;
}
int satisfy = 0;
for (int j = head[i]; j <= tail[i]; ++j)
{
FWT.Modify(isa[j], 1);
satisfy += FWT.Query(n) - FWT.Query(isa[j]);
previous[j] = satisfy;
}
intervals[i][i] = satisfy;
for (int j = head[i]; j <= tail[i]; ++j)
{
suffix[j] = satisfy;
FWT.Modify(isa[j], -1);
satisfy -= FWT.Query(isa[j] - 1);
}
}
}
else
{
#pragma unroll 8
for (int i = 1; i <= blocks; ++i)
{
memcpy(block[i], block[i - 1], sizeof(block[0]));
sort(current + head[i], current + 1 + tail[i]);
for (int j = head[i]; j <= tail[i]; ++j)
{
++block[i][isa[j]];
belong[j] = i;
sorted[j] = current[j].first;
}
int satisfy = 0;
for (int j = head[i]; j <= tail[i]; ++j)
{
FWT.Modify(isa[j], 1);
satisfy += FWT.Query(n) - FWT.Query(isa[j]);
previous[j] = satisfy;
}
intervals[i][i] = satisfy;
for (int j = head[i]; j <= tail[i]; ++j)
{
suffix[j] = satisfy;
FWT.Modify(isa[j], -1);
satisfy -= FWT.Query(isa[j] - 1);
}
}
}
if (blocks <= 8)
{
for (int dis = 1; dis <= blocks; ++dis)
{
for (int i = n - 1; i; --i) block[dis][i] += block[dis][i + 1];
for (int l = 1, r = dis + 1; r <= blocks + 1; ++l, ++r)
intervals[l][r] = intervals[l + 1][r] + intervals[l][r - 1] - intervals[l + 1][r - 1] +
Merge_Idx(head[l] - 1, head[r] - 1, tail[l] - head[l] + 1, tail[r] - head[r] + 1);
}
}
else
{
#pragma unroll 8
for (int dis = 1; dis <= blocks; ++dis)
{
for (int i = n - 1; i; --i) block[dis][i] += block[dis][i + 1];
for (int l = 1, r = dis + 1; r <= blocks + 1; ++l, ++r)
intervals[l][r] = intervals[l + 1][r] + intervals[l][r - 1] - intervals[l + 1][r - 1] +
Merge_Idx(head[l] - 1, head[r] - 1, tail[l] - head[l] + 1, tail[r] - head[r] + 1);
}
}
if (m <= 8)
{
long long lastans = 0;
for (int i = 0; i < m; ++i)
{
long long l, r;
read(l, r);
l ^= lastans;
r ^= lastans;
Behavior(l, r, lastans);
}
}
else
{
long long lastans = 0;
#pragma unroll 8
for (int i = 0; i < m; ++i)
{
long long l, r;
read(l, r);
l ^= lastans;
r ^= lastans;
Behavior(l, r, lastans);
}
}
return 0;
}