§ Desciption
Link.
给定一个值域在 的长度为 的序列(由随机数构成),求给定一组区间中的最小值的最大值的期望。
§ Solution
记:
因为我们最后取的是 ,不能直接用全概率公式,转化一下:
这意味着每一个被询问区间中的最小值都需 。也就是说,每一个区间至少需要一个 的数。
这对于每一个区间来说概率为 。又因为区间可能出现相交,所以我们考虑用点去被包含于区间。
当然,一个区间包含另一个区间,这个区间肯定是没有用的。然后把区间按左右端点分别为第一、第二关键字排序。
枚举 ,设 表示区间右端点在 之前的所有区间满足条件的概率。
#include <cstdio>
using i64 = long long;
const int MOD = 666623333;
const int MAXN = 2e3 + 5;
int n, x, q, ar[MAXN];
i64 f[MAXN][2], ff[MAXN][2];
void imax ( int& a, const int b ) { a = a < b ? b : a; }
int add ( const int a, const int b, const int p = MOD ) { return a + b < p ? a + b : ( a + b ) % p; }
int sub ( const int a, const int b, const int p = MOD ) { return a - b < 0 ? a - b + p : a - b; }
int mul ( const i64 a, const i64 b, const int p = MOD ) { return a * b % p; }
int cpow ( int bas, int idx = MOD - 2 ) {
int res = 1;
while ( idx ) {
if ( idx & 1 ) res = mul ( res, bas );
bas = mul ( bas, bas ), idx >>= 1;
}
return res % MOD;
}
int main () {
scanf ( "%d%d%d", &n, &x, &q );
for ( int i = 1, tmpl, tmpr; i <= q; ++ i ) scanf ( "%d%d", &tmpl, &tmpr ), imax ( ar[tmpr + 1], tmpl );
for ( int i = 1; i <= n + 1; ++ i ) imax ( ar[i], ar[i - 1] );
i64 ix = cpow ( x ), ans = 0;
for ( int i = 1; i <= x; ++ i ) {
i64 p = mul ( i - 1, ix ) % MOD, ip = cpow ( 1 - p ), s;
ff[0][0] = ff[0][1] = 1;
for ( int j = 1; j <= n; ++ j ) ff[j][0] = mul ( ff[j - 1][0], 1 - p ) % MOD, ff[j][1] = mul ( ff[j - 1][1], ip ) % MOD;
f[0][0] = 0, f[0][1] = 1;
for ( int j = 1; j <= n; ++ j ) {
f[j][0] = mul ( mul ( p, sub ( f[j - 1][1], ar[j] ? f[ar[j] - 1][1] : 0 ) ) % MOD, ff[j - 1][0] ) % MOD;
f[j][1] = add ( mul ( f[j][0], ff[j][1] ) % MOD, f[j - 1][1] ) % MOD;
}
s = 0;
for ( int j = ar[n + 1]; j <= n; ++ j ) s = add ( s, mul ( f[j][0], ff[n - j][0] ) % MOD ) % MOD;
ans = sub ( add ( ans, 1 ) % MOD, s );
}
printf ( "%lld\n", ans % MOD );
return 0;
}