§ Description
Link.
给出一个堆,然后让你填数进去,使得其满足小根堆的性质,并使编号靠前的点的数最大。
§ Solution
考虑贪心,把原数列降序排序,然后因为这个东西是整除分块的形式,所以一个结点的子树一定对应的是原序列的一个子区间。不过这个东西并不能用根号分治来做。
然后对于一个子树的根 ,我们给他 这个区间,,结点 , 按需分配,反正就优先队列维护就行了。
代码大概长成这样子:
void Search(int x) {
for(int y in SonOf(x)) Search(y);
if(x != VirtualRoot) {
ans[x] = PriorityQueue.top();
PriorityQueue.pop();
}
}
那个 VirtualRoot
是为了编码方便弄出来的一个虚根,不用管。同时发现这个做法只有在 的时候才是对的。Hack 数据网上找找应该有。
对于一个与 同层的结点,可能会出现这个结点与 的儿子交换点权后更优的情况。
对值域 建出一棵线段树,同时定义 为 。然后每次查找能用的个数不小于该结点子树大小的位置,有多解跑到最右边,然后把这个位置的能用个数减去子树大小。描述的不清楚,建议做代码阅读理解领略一下精神。
#include<bits/stdc++.h>
struct node
{
int mn,tag;
node(int A=0,int B=0)
{
mn=A;
tag=B;
}
}nodes[2000010];
std::vector<std::vector<int> > e;
int n,siz[500010],ans[500010];
double k;
void dfs(int x)
{
siz[x]=1;
for(int i=0;i<int(e[x].size());++i)
{
int y=e[x][i];
dfs(y);
siz[x]+=siz[y];
}
}
void build(int l,int r,int x)
{
if(l^r)
{
int mid=(l+r)>>1;
build(l,mid,x<<1);
build(mid+1,r,x<<1|1);
nodes[x].mn=std::min(nodes[x<<1].mn,nodes[x<<1|1].mn);
}
else nodes[x].mn=l;
}
void push_down(int x)
{
if(nodes[x].tag)
{
int &cur=nodes[x].tag;
nodes[x<<1].mn+=cur;
nodes[x<<1|1].mn+=cur;
nodes[x<<1].tag+=cur;
nodes[x<<1|1].tag+=cur;
cur=0;
}
}
void ins(int l,int r,int x,int fr,int ba,int delta)
{
if(l>ba || r<fr) return;
if(l>=fr && r<=ba)
{
nodes[x].mn+=delta;
nodes[x].tag+=delta;
}
else
{
int mid=(l+r)>>1;
push_down(x);
ins(l,mid,x<<1,fr,ba,delta);
ins(mid+1,r,x<<1|1,fr,ba,delta);
nodes[x].mn=std::min(nodes[x<<1].mn,nodes[x<<1|1].mn);
}
}
int find(int l,int r,int x,int d)
{
if(l^r)
{
int mid=(l+r)>>1;
push_down(x);
if(d<=nodes[x<<1|1].mn) return find(l,mid,x<<1,d);
else return find(mid+1,r,x<<1|1,d);
}
else return l+(nodes[x].mn<d);
}
int getDiv(int x,double k)
{
return int(std::floor(double(x)/k));
}
int main()
{
scanf("%d %lf",&n,&k);
e.resize(n+1);
std::vector<int> a(n+10),pos(n+10);
for(int i=1;i<=n;++i) scanf("%d",&a[i]);
std::sort(a.begin()+1,a.begin()+n+1,std::greater<int>());
for(int i=n-1;i;--i)
{
if(a[i]==a[i+1]) pos[i]=pos[i+1]+1;
}
for(int i=1;i<=n;++i) e[getDiv(i,k)].emplace_back(i);
dfs(0);
build(1,n,1);
for(int i=1;i<=n;++i)
{
if(getDiv(i,k)^getDiv(i-1,k)) ins(1,n,1,ans[getDiv(i,k)],n,siz[getDiv(i,k)]-1);
int tmp=find(1,n,1,siz[i]);
tmp+=pos[tmp];
++pos[tmp];
tmp-=pos[tmp]-1;
ans[i]=tmp;
ins(1,n,1,tmp,n,-siz[i]);
}
for(int i=1;i<=n;++i) printf("%d ",a[ans[i]]);
return 0;
}